无需调控而胜任不同任务 这种AI更接近人类思考方式(2)
未来通用人工智能还需依托脑科学发展
“虽然说深度强化学习技术最有可能实现通用人工智能,但是并不能说就一定能够实现,我们离真正的通用人工智能还是有很大差距的。”郝建业表示,深度学习和强化学习结合的时候,对现实情况的枚举就变成首先需要对现实情况进行模式识别,然后进行有限模式的枚举,从而减少计算的压力,但是所需的数据将比其他机器学习算法要大得多。如果将场景扩展到多智能体的深度强化学习,那么需要的数据和算力是呈指数级上升的,目前还没有平台能够提供强化学习所需要的海量数据,无法穷举现实中可能遇到的种种复杂情况。这种数据需求在很多现实领域中都是无法实现的。
举例说明,比如强化学习需要大量的试错,如果把单手解魔方机器手应用到做饭的现实场景,那么它可能会把食材弄一地,也可能把一整袋盐倒到锅中,还有可能引起火灾。因此通过试错学习的模式,在现实场景中是无法实现的。
此外,深度学习和强化学习都是机器学习领域中最难调试成功的,它的成功案例其实不算很多,但是一旦推出,都会引起轰动。并且,这是一个连随机种子都会大大影响学习效果的模型框架。同样的模型,训练10次可能7次是失败的,3次是成功的。还有一点,深度强化学习极其容易过拟合到智能体当前交互的环境中,所以环境稍有改变,之前看起来表现出色的智能体,很可能就会犯低级错误。
“人类认识事物的时候,一般都是通过数据进行因果推理和判断,才得出相应的解决方案。而目前的人工智能系统却并不能实现这种因果推导。”郝建业表示,可能未来通用人工智能的发展,还需要依托于脑科学的发展,目前我们对人脑的认知还处于非常初级的阶段。大脑对事物的认知过程、解决问题的过程以及思考的能力等机制还都不清楚,因此,目前人工智能的发展,离这种真正能模拟人类智能思考的通用人工智能还有很长的路要走。
延伸阅读
延伸阅读
人工智能晋级《星际争霸2》玩家最高等级
一项在《星际争霸2》欧洲服务器上开展的“盲测”显示,谷歌旗下“深层思维”公司开发的人工智能程序“阿尔法星”在游戏中超越99.8%的人类玩家,在游戏的人族、神族和虫族排名中均达到最高的“宗师”级别。“深层思维”研发团队在日前出版的英国《自然》杂志上报告了这项成果。
据介绍,在《星际争霸2》官网欧洲服务器上,“阿尔法星”使用与人类玩家相同的地图和条件匿名参与游戏,并能在无人干预情况下持续自我改进。为了让测试更公平,团队还根据人类玩家的水平限制了机器的某些能力,比如将“阿尔法星”的动作频率降低到与熟练人类玩家接近,并把它的视野限制在摄像头范围内。
“深层思维”研发团队认为,训练“阿尔法星”的先进方法以及算法架构未来有望用于解决复杂的实际问题,包括天气预测、气候模型计算以及语言理解等。但也有学者对现阶段人工智能挑战战略游戏的能力持保守态度。加拿大纽芬兰纪念大学人工智能学者戴夫丘吉尔认为,“阿尔法星”仍有许多弱点,比如无法抵御以前从未见过的战略等。
陈 曦